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Abstract

Subspaces offer convenient means of representing infor-

mation in many Pattern Recognition, Machine Vision, and

Statistical Learning applications. Contrary to the grow-

ing popularity of subspace representations, the problem

of efficiently searching through large subspace databases

has received little attention in the past. In this paper we

present a general solution to the Approximate Nearest Sub-

space search problem. Our solution uniformly handles

cases where both query and database elements may differ

in dimensionality, where the database contains subspaces

of different dimensions, and where the queries themselves

may be subspaces. To this end we present a simple map-

ping from subspaces to points, thus reducing the problem to

the well studied Approximate Nearest Neighbor problem on

points. We provide theoretical proofs of correctness and er-

ror bounds of our construction and demonstrate its perfor-

mance on synthetic and real data. Our tests indicate that an

approximate nearest subspace can be located significantly

faster than the nearest subspace, with little loss of accuracy.

1. Introduction

Although the use of subspace representations has in-

creased considerably over the years, one fundamental ques-

tion related to their use has so far received little attention:

How does one efficiently search through a database of sub-

spaces? There are two main reasons why we believe this

question to be paramount. The first is the demonstrated

utility of subspaces as a (often only) means for represent-

ing varying information. The second is the ever-growing

volume of information routinely collected and searched

through as part of Computer Vision and Pattern Recogni-

tion systems, information often represented by subspaces.
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The goal of this paper is to address this question by present-

ing a general framework for efficient subspace search.

Recently, Basri et al. [5] have presented a method for

sub-linear approximate nearest subspace (ANS) search.

Their solution, however, was limited to scenarios where the

queries are high dimensional points. They thus ignore cases

where the query itself may be a subspace and consequently

cases where the database items may have varying dimen-

sions smaller than that of the query. In this paper we extend

their work and provide the following contributions.

• We present a general framework for efficient approx-

imate nearest subspace search. Our framework ad-

dresses circumstances where both query and database

elements may be either points or subspaces of differ-

ent dimensions. This allows us in particular to han-

dle cases in which the database subspaces are of vary-

ing dimensions, smaller or larger than the query’s own

dimension. This work thus facilitates the use of sub-

spaces, and in particular subspace queries, in a range

of applications.

• We rework the math in [5], showing the relation be-

tween the Euclidean and the F-norm distance. We thus

obtain simpler yet more general derivations.

• We provide empirical analysis on both synthetic and

real data for the new scenarios handled.

Because both query and database items may be sub-

spaces, we define their distance as the sum squared sines

of the principal angles between them. To efficiently search

through a database of subspaces for ones which minimize

this distance, we present a simple reduction to the problem

of efficient approximate nearest neighbor (ANN) search

with point queries and database elements [2, 3, 20]. We fur-

ther show that the particular circumstance handled by [5] is

a special case of the mapping presented here.

We next survey related work, describe our method in-

cluding theoretical proofs of correctness and error bounds

of our construction, and present both analytical and empiri-

cal analysis.



2. Previous Work

The literature on subspace representations is immense

and so is the number of applications utilizing them. The

popularity of subspaces is due to the observation that a

single subspace can capture an infinite range of transfor-

mations applied to a single object. For example, only

one subspace is required to represent all possible images

of a Lambertian object viewed under different illumina-

tions [6, 22]. Similar representations were constructed

for objects viewed under changing spatial transformations

(e.g. using the “tangent distance” [24]), viewpoint [25, 27],

and articulation [11, 12, 26]. Subspaces have additionally

been used to represent an object’s identity [16, 29], classes

of similar objects [4, 9] and more.

Consider for example a typical scenario, where a

database of high dimensional subspaces is collected, each

one representing different transformations of a certain ob-

ject. Given a query, this database is searched for the query’s

nearest (or near) subspaces. Basri et al. [5] presented an

efficient search method for the particular case of the query

being a high-dimensional point and the database contain-

ing subspaces of identical dimensions. Although an im-

portant first step, their method is insufficient for the fol-

lowing two reasons. The first is strong evidence that of-

ten the queries should and sometimes must be subspaces

themselves. In [16], for example, Fitzgibbon and Zisserman

showed that for the purpose of face recognition subspace-

to-subspace distance is a better measure of similarity than

point-to-subspace. A similar result was demonstrated em-

pirically even earlier by [28] for face recognition using

video streams. Moreover, when using subspaces to cap-

ture motion (e.g., [11, 12, 18, 26]) it is unclear how points

can even be used to represent queries; subspaces being

the natural representation for both the database items and

the queries. These last examples all demonstrate the sec-

ond shortcoming of [5], namely, in all these applications

the database subspaces might differ in dimensionality. Al-

though [5] handle databases which contain subspaces of

varying dimensions, since their queries are points, they do

not consider cases where the database subspaces have vary-

ing dimensions which are smaller than the query’s.

We should note that subspace search problems have re-

ceived considerable attention also in theoretical fields of

Computer Science. For example, subspaces have been

used to solve the so called “Partial Match” problem on

strings [13] and related problems. These problems usually

use subspaces to represent binary strings with unknown val-

ues. The subspaces they handle are therefore parallel to the

world axes and only span two values in each coordinate. As

such, they present a special case of the one handled here.

In his paper [21] Magen proposed an efficient solution to

the nearest subspace search problem by a reduction to the

vertical ray shooting problem. However, besides being ap-

plicable only to point queries, his solution requires prepro-

cessing time exponential in the subspace dimension and so

is impractical in many applications.

3. Nearest Subspace Search

The nearest subspace search problem is defined as fol-

lows. Let {S1,S2, . . . ,Sn} be a collection of linear (or

affine) subspaces in Rd, each with intrinsic dimension kSi .

Given a query subspace Q ⊂ Rd, with intrinsic dimension

kQ, denote by dist(Q,Si) a distance measure between the

subspaces Q and Si, 1 ≤ i ≤ n. We seek the subspace S∗

that is nearest to Q, i.e., S∗ = arg mini dist(Q,Si). For

notational simplicity we omit below the superscript index

and refer to a database subspace as S. The meaning should

be clear from the context.

There are many possible definitions of the distance be-

tween two linear subspaces [14]. Our particular choice of

distance will be discussed in the following section. To the

best of our knowledge there is no accepted distance measure

between affine subspaces. We will thus limit our discussion

at this point to the case of linear subspaces. Later on, in Sec-

tion 3.5, we will revisit the affine subspace case and propose

possible solutions.

Following [5] we approach the nearest subspace prob-

lem by reducing the problem to the well explored nearest

neighbor (NN) search problem for points. To achieve such

a reduction we define two transformations, u = f(S) and

v = g(Q), which respectively map any given database sub-

space S and query subspace Q to points u,v ∈ Rd′

for

some d′, such that the Euclidean distance ‖v−u‖2 increases

monotonically with dist(Q,S). In particular, we derive be-

low such mappings for which

‖v − u‖2
2 = µdist2(Q,S) + ω (1)

for some constants µ and ω.

This form of mapping was was shown to be successful

for point queries [5]. Here we start by proposing a simple

yet general mapping that can handle both point as well as

subspace queries, when the database subspaces are all of the

same intrinsic dimension (Section 3.1). In Section 3.3 we

refine the mapping to obtain better error bounds. Later on,

in Section 3.4 we show how this mapping can be extended

to handle databases of subspaces of varying dimensions.

3.1. A simple reduction to nearest neighbor search

We represent a database linear subspace S ⊂ Rd by a

d × kS matrix S with orthonormal columns. We represent

a point query by a d× 1 vector q and a subspace query as a

d × kQ matrix Q with orthonormal columns.

Next, we need to define the distance measure

dist2(Q,S) between two subspaces. As was shown in [14],

all common distance definitions are based on the principal



angles θ = (θ1, θ2, ...) and are monotonic with respect to

each other. That is, sorting the database subspaces accord-

ing to their distance from the query subspace will produce

the same order, regardless of the distance definition. There-

fore, the choice of distance measure is based on its appli-

cability to mappings of the form in Eq. (1). After some

investigation, we chose to adopt the projection Frobenius

norm defined as dist2(Q,S) = ‖ sin θ‖2
2, where sin θ is

the vector of sines of the principal angles between the sub-

spaces S and Q. When Q and S are of the same dimension

kS = kQ = k the vector sin θ is of length k, while when

they differ in dimension its length is kmin = min(kS , kQ).

This distance was selected since it has three important

properties:

• A linear function of the squared distance can be obtained

via the Freobenius norm of the difference between the or-

thographic projection matrices of the subspaces (aka its

name):

‖QQT − SST ‖2
F = kQ + kS − 2

kmin
∑

i=1

cos2 θi (2)

= kQ + kS − 2kmin + 2dist2(Q,S).

• We can use the projection F-norm also to compute the dis-

tance between a point query q ∈ Rd and a database sub-

space S, since the Euclidean distance between them, de-

noted dist(q,S), is, up to a linear transformation, equal to

the projection F-norm between the 1D space through q and

S:

‖qq
T − SST ‖2

F = ‖qq
T ‖2 + ‖SST ‖2 − 2qT SST

q

= ‖q‖4 + kS − 2‖q‖2 +

2dist2(q,S). (3)

• Finally, we note, that the Frobenius norm of a square ma-

trix A can be computed by summing the squares of all

its entries: ‖A‖2
F =

∑

i,j A2
ij . This implies that it can

also be computed as the L2 norm of a vector a such that

‖A‖2
F = ‖a‖2

2 and a is a vector containing all entries of A.

These observations imply that a mapping based on rear-

ranging the projection matrices SST and QQT into vectors

could be of the form defined in Eq. (1). Since the projec-

tion matrices are symmetric, naı̈ve rearrangement of their

entries will result in redundancy. We thus further define the

following operator: For a symmetric d× d matrix A we de-

fine an operator h(A), where h rearranges the entries of A
into a vector by taking the entries of the upper triangular

portion of A, with the diagonal entries scaled by 1/
√

2, i.e.,

h(A) = (
a11√

2
, a12, ..., a1d,

a22√
2
, a23, ...,

add√
2
)T ∈ Rd′

(4)

and d′ = d(d + 1)/2. Our generalized mapping can now be

defined as follows:

u
.
= f(S) = h(SST )

v
.
= g(Q) = h(QQT ). (5)

This mapping is consistent with the desired distance def-

inition of Eq. (1) with µ = 1 when all database subspaces

S are of the same intrinsic dimension kS = k ∀S. The

additive constant ω depends on the query. One can show

that for subspace queries with kQ = kS = k we get

ω = 0, while for subspace queries of different dimension

kQ 6= kS we get ω = 1
2 (kS + kQ) − kmin which is mu-

tual to all database items, implying a valid mapping. More-

over, this mapping applies to point queries where we get

ω = 1
2‖q‖4 − ‖q‖2 + 1

2k.

Note, that these observations imply that the same

mapped database can be utilized for various query types

without knowing a-priori which queries will be applied.

This can be useful in many applications, for example, in

face recognition the number of available images can vary

depending on application. At times only a single query im-

age will be available, but when the face is captured, for ex-

ample, via a web-cam many occurrences of it may be avail-

able and can be used to fit a linear subspace as was pro-

posed in [28]. The mapping of Eq. (5) allows using a single

database for all queries regardless of their dimension.

3.2. Is this a good mapping?

The quality and speed of the search depend highly on

the constants µ and ω. One can show that with map-

pings of the form in Eq. (1) to guarantee an approxima-

tion ratio (error bound) of 1 + E in the original distance

r = dist(Q,S) we would need to select an approxima-

tion ratio 1 + ε =
(

ω/µ+r2(1+E)2

ω/µ+r2

)1/2

in the search on the

mapped points. We would therefore like the ratio ω/µ to be

minimized. A large ratio ω/µ means the entire database is

pushed away from the query requiring longer search times

and using smaller values of ε to maintain result quality. The

mapping of Eq. (5) is thus “ideal” with ω = 0 for queries

of dimension equal to the database subspaces, but not so for

queries of a different dimension. Ideally, one would like to

eliminate the additive constant ω also for the case of queries

of different dimension. Unfortunately, as we next show, a

non-zero additive constant ω is inevitable when the query

and database subspaces differ in dimension:

Lemma: Let S and Q be subspaces ∈ Rd with intrinsic

dimensions kS and kQ, respectively and kS 6= kQ. Let

u = f(S) and v = g(Q), be their mapping into points

u,v ∈ Rd′

for some d′, such that the distance between the

mapped points is of the form ‖v−u‖2
2 = µdist2(Q,S)+ω.

Then ω 6= 0.



Proof: When S ⊂ Q or Q ⊂ S then by definition

dist2(Q,S) = 0. If ω = 0 we get u = v. That is, any two

subspaces with non-trivial intersection must be mapped to

the same point. Since there exists a chain of intersections

between any two subspaces, the only possible mapping in

the case that ω = 0 is the trivial mapping. �
Note, that this is true for any mapping from subspaces to

points and is not limited to the mapping of the form chosen

in this paper. While ω cannot be eliminated the ratio ω/µ
can be further minimized, as is shown next.

3.3. Improving the error bounds

First, we denote by t =
√

2h(Id) ∈ Rd′

(Id denotes the

d × d identity matrix), a vector whose entries are one for

each diagonal entry in h(.) and zero elsewhere. Database

subspaces mapped using Eq. (5) lie on the intersection of

a sphere and a hyperplane; they lie on a sphere since all

share the same length ‖u‖2 = 1
2kS , they lie on a hyper-

plane orthogonal to t because tT
u = kS/

√
2 (since the

trace of a projection matrix is constant). If the query is of

a different intrinsic dimension it will be mapped onto the

intersection of different sphere and hyperplane (see Fig. 1).

To reduce the distance between the mapped query and the

mapped database items we can modify our mapping such

that all mapped subspaces lie on the intersection of the same

hyperplane and the same sphere (see Fig. 1). This modifi-

cation maintains the monotonicity of the mapping.

We implement this modification as follows. We start by

modifying our mapping such that the mapped query is pro-

jected onto the hyperplane of mapped subspaces. We first

translate the hyperplane of mapped database subspaces so

that it goes through the origin, by setting ū = u + αt with

α = −kS/(d
√

2). The hyperplane after this translation is

given by tT
ū = 0. Given a query Q and its mapped version

v we seek to project v onto this translated hyperplane. That

is, we seek a scalar β such that v̄ = v+βt lies on the hyper-

plane tT (v + βt) = 0. Using the identities tT
v = kQ/

√
2

and tT t = d we obtain β = −kQ/(d
√

2).

Next, we wish to uniformly scale the query to bring it to

the same sphere as the database items. Such uniform scaling

too maintains the monotonicity of the mapping. To simplify

notations, we scale both database items and the query to

have unit norm. Our final mapping is as follows,

u
.
= f(S) =

1

cS

(

h(SST ) − kS

d
√

2
t

)

v
.
= g(Q) =

1

cQ

(

h(QQT ) − kQ

d
√

2
t

)

, (6)

with cS =
√

1
2kS(1 − kS/d) and cQ =

√

1
2kQ(1 − kQ/d). This mapping implies
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Figure 1. The geometry of the mapped subspaces. Left: Slicing through

mapped subspaces of intrinsic dimensions 4,6 and 8 in a 10 dimensional

space, shows that the basic mapping of Eq. (5) maps subspaces of different

dimensions onto different intersections of spheres and hyperplanes. Right:

The refined mapping of Eq. (6) aligns the spheres.

‖v − u‖2
2 = µ dist2(Q,S) + ω, where µ = 1

cScQ

and ω = 2 − kmin

cScQ
+

kSkQ

dcScQ
.

The constants µ > 0 and ω ≥ 0 depend only on

kS , kQ and d and are thus both mutual to all database items

and maintain monotonicity with respect to the true dis-

tance between subspaces. When the query and database

have equal intrinsic dimensions, i.e., kS = kQ, we get

µ = 2d/(kd− k2) and ω = 0 implying that the mapping of

Eq. (6) reduces to the mapping of Eq. (5), up to a scale fac-

tor. When the intrinsic dimension of the query and database

subspaces are significantly smaller than the ambient space

dimension, i.e., kS , kQ � d we get µ ≈ 2/
√

kSkQ and

ω ≈ 2(1 − kmin/
√

kSkQ).

3.4. Subspaces of varying dimension

In some applications the database itself can contain sub-

spaces of varying dimension. This may be the case, for ex-

ample, when the database contains visual descriptions of

different articulated objects with varying degrees of free-

dom. It could also arise in face recognition when varying

number of images (from one to many) are available for dif-

ferent faces. The mapping of Eq. (5) cannot be used in such

scenarios since it implies that ω depends on kS and is thus

not mutual to all database items, breaking the monotonicity.

Next, we propose mappings that remove the dependence

on the database subspace dimension, thus allowing han-

dling within a single framework databases with subspaces

of varying intrinsic dimensions.

kQ > kS, ∀S : When the intrinsic dimension of the query

subspace is larger than that of all database subspaces, i.e.,

kQ > kS ∀S, we can modify the mapping so that it does

not depend on kS .

u
.
= f(S) = h(SST )

v
.
= g(Q) =

1

2
h(QQT ), (7)

and consequently ‖v−u‖2
2 = 1

8kQ + 1
2kS − 1

2‖ cos θ‖2 =
1
8kQ+ 1

2dist2(Q,S). This implies we have obtained a map-

ping for which ‖v−u‖2
2 = µ dist2(Q,S)+ω, where µ = 1

2



and ω = 1
8kQ. This distance is independent of the database

subspace dimension kS and thus the mapping of Eq. (7) can

be used for all subspaces even when their intrinsic dimen-

sions vary.

kQ ≤ kS, ∀S: When the intrinsic dimension of the query

subspace is smaller than that of all database subspaces, i.e.,

kQ ≤ kS ∀S, we can eliminate the dependence on kS by

introducing an additional entry to the mapped subspaces, as

follows.

u
.
= f(S) = [h(SST ) ,

√

0.5(kmax − kS)]

v
.
= g(Q) = [h(QQT ) , 0], (8)

where kmax = maxS kS . Consequently, ‖v − u‖2
2 =

µ dist2(Q,S) + ω, where µ = 1 and ω = 1
2kmax − 1

2kQ.
Hence, Eq. (8) provides a valid mapping such that the dis-

tance between mapped subspaces is a linear function of the

true distance with constants mutual to all database items.

Arbitrary query dimension. This leaves us with the case

that the query dimension is smaller than the dimension of

some elements in the database and larger than others. Un-

fortunately, we cannot obtain a single mapping in which the

distance between the mapped subspaces is independent of

kS when kS is free to be larger or smaller than kQ. The rea-

son for this is that the true distance between two subspaces

is obtained by summing over kmin = min(kS , kQ) angles

and thus this distance depends on the relation between kQ

and kS .

When the query dimension kQ is known a-priori and

fixed for all queries, we propose to pre-process the database

twice, once with the mapping of Eq. (7), which is appropri-

ate for database subspaces with kQ > kS and once with the

mapping of Eq. (8), which is appropriate for database sub-

spaces with kQ ≤ kS . We apply each mapping only to the

appropriate portion of the database. Given a query, we per-

form a search in each of the two mapped databases. From

each search we obtain a candidate nearest neighbor, com-

pute the true distance to the two and select the closer one.

This does not modify the pre-processing time and memory

requirement, but it does make running time slightly slower.

Still, it is much faster than full linear search (see Sec. 4).

When kQ is unknown a-priori and can vary we apply

each mapping to the entire database. Given a query, we

search both of the mapped databases. From each search

we obtain an a-priori chosen number of candidate nearest

neighbors and compute the true distance to those that are

appropriate for the corresponding mapping. We then select

the nearest neighbor out of those. This doubles the pre-

processing time, running time and memory requirement, but

is still faster than full linear search. A problem with this ap-

proach is that since each of the two mappings is appropriate

for only part of the database subspaces, we cannot guarantee

that the extracted candidate near neighbors are appropriate

and consequently we cannot guarantee bounds on the error.

An alternative solution is to pre-process the database for

all possible values of kQ. For each possible kQ we split

the database into two subsets, one including all subspaces

kS ≥ kQ and the other with all subspaces such that kS <
kQ. Given a query we proceed as above, searching the two

appropriate pre-processed databases. Note that at most we

need to pre-process the database for max(kS)−min(kS)+1
values of kQ. This increases the pre-processing time and

memory requirement by a factor of (max(kS)−min(kS)+
1), however, running time is still only doubled. Yet another

alternative is to create max(kS) − min(kS) + 1 mapped

databases, each including only subspaces of one possible

value of kS . The runtime in such a solution would be

slower since we will need to search max(kS)−min(kS) +
1 databases instead of two, however, the required space

would be significantly smaller as each database subspace

is mapped and stored only once.

Refining the mapping as was proposed in Eq. (6), is

impossible in this case since the database subspaces are

mapped onto different hyperplanes, depending on kS .

3.5. Affine subspaces

As far as we know, there is no accepted distance measure

between affine subspaces. This is probably since affine sub-

spaces are defined by two different components with differ-

ent natures: a linear part, defining the subspace orientation,

and an offset vector from the origin. The distance between

two affine subspaces can depend on both the difference in

orientation and the difference in offset, however, these dis-

tances are not defined in the same units, one is an angular

difference while the other is a length, and thus cannot be

easily combined into a single unified metric.

A possible approach to incorporating the angular dis-

tance and the offset distance is, given an affine subspace

A of intrinsic dimension kA in Rd, to embed A as a lin-

ear subspace in Rd+1 with intrinsic dimension kA + 1. The

distance between two affine subspaces is then defined as

the distance between the corresponding higher-dimensional

embedded linear subspaces. This is inspired by the compu-

tation of distance between optical flow directions, proposed

in [7]. Having reduced the problem to that of linear sub-

spaces we can use the appropriate mapping as proposed in

the previous sections.

4. Complexities

Given a query, our search routine starts by mapping it

to O(d2)-space using Eqs. (5) or (6) (or (7),(8) in case of

a database with subspaces of varying dimension), and then

searching for an approximate nearest neighbor using a point

based method (e.g. [3, 2]). Mapping the query requires

O(kQd2) time, giving us the following general expression

for the query runtime: O(kQd2) + TANN (n, d2), where
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Figure 2. Synthetic data tests. log-scale run times compared for an exact linear search, linear search with a preprocessed database and our ANS method

with ANN ε = 100. The following tests were performed. Varying n: Database subspaces of kS = 30 embedded in d = 60 space, tested with 1000

queries of dimension kQ = 10. Varying kQ: Database contains 1000 subspaces with kS = 30, tested with 1000 queries. Varying d: Database contains

1000 subspaces with kS = 30, tested with 1000 queries of dimension kQ = 10. Err rate for our method remained at an almost constant 0.01 in all three

experiments, through all values tested.

TANN (n, d2) is the running time for a choice of an ANN

algorithm, on a database of n points in Rd2

.

One ANN method is the search-tree based approaches

(e.g. [3]). Given an acceptable error rate ε > 0 these

methods report a point whose distance from the query is

at most a (1 + ε)-factor larger from the distance of the near-

est point from the query. Their runtime is TANN (n, d) =
O(dd+1ε−d log n). Despite the exponential term these

methods tend to run much faster than a sequential scan even

in fairly high dimensions.

An alternative approach for ANN is the Locality Sensi-

tive Hashing (LSH) scheme (e.g., [2]), designed to solve the

near neighbor problem. Given r and ε these methods seek a

neighbor of distance at most r(1+ε) from the query, provid-

ing that the nearest neighbor lies within distance r from the

query. LSH finds a near neighbor in O(dn1/(1+ε)2+O(1))
operations. An ANN can then be found using an additional

binary search on r, increasing the overall runtime complex-

ity by a O(log n/ε) factor.

The preprocessing time includes applying our mapping

to the n database subspaces, and then inserting them into

a search structure, giving us: O(nkSd2) + TpANN (n, d2),
with TpANN (n, d2) being the preprocessing running time

for a choice of an ANN algorithm. For the LSH scheme [2],

for example, TpANN (n, d2) = O(d2n1+1/(1+ε)2+O(1)),
depending on the acceptable ε error rate, while for the kd-

tree scheme [3] this value is O(d2n log n). Finally, the

space required by our method depends on the ANN method

used and is, e.g., O(nd2) for the kd-tree scheme of [3], used

in our experiments.

Note, that an exact sequential search for a nearest

subspace using the distance ||QQT − SST ||2F , requires

O(kQd2 + nkSd2). Of course, computing SST can be per-

formed at preprocessing, resulting in a query runtime com-

plexity of O(kQd2)+O(d2n) (see Fig. 2 for empirical eval-

uations). We therefore obtain that the runtime difference

between our method and a linear search is the difference

between an exact and approximate point search on points

in O(d2). The exact search can alternatively be performed

by computing SV D(ST Q) to obtain the cosines of the an-

gles between the query and each database subspace. The

complexity of this method is O(kQkSd + max(kQ, kS)3)
and is therefore preferable when both kQ, kS � d. Finally,

we note that when the given subspaces lie in high dimen-

sion we can use a number of random projections of the sub-

spaces [21] or their mapped versions [19] onto an O(log n)
dimension to reduce complexity while sacrificing some ac-

curacy.

5. Experiments

To evaluate the performance of our ANS scheme we

adopt the conventional tests in the field (e.g., [2, 3]). These

are based on synthetic data with varying parameters as this

is the only way to evaluate asymptotic behavior empirically.

In addition to these tests, we present results demonstrat-

ing the performance of our ANS search method when ap-

plied to real visual data. Our experiments show that the

ANS scheme can indeed significantly expedite the search

for a nearest subspace, with only a small penalty in accu-

racy. Our implementation is in C and uses the ANN kd-tree

code of [3]. OpenCV was used for all our matrix routines.

Although not reported here, we have performed tests using

the E2LSH scheme of [1] as the underlying ANN method.

These results were consistent with the ones obtained using

kd-trees.

Synthetic data. We tested our ANS scheme on data sets

containing thousands of synthetically produced queries and

database elements, of fairly large dimensions (Fig. 2). The

tests compare our ANS scheme to a linear search, and a lin-

ear search with a preprocessed database (see Sec. 4). Run-

times for linear search using SVD were significantly slower

than the ones reported here, and so are not displayed. Note

that we use an ANN ε = 100 as a stand-in for the value of

“infinity”, that is, “the fastest, least exact search”. For sta-

bility, tests were performed three times and the median re-

sult is reported. Both subspaces and queries were randomly



Scene classification
Method Run time Correct

ANS (our result) 2.3 sec. 63%

Exact with preprocessing 13.8 sec. 63%

Exact nearest patch 135 sec. 55%
Figure 3. ANS is approximately an order of magnitude faster with no

loss of accuracy.

selected from a uniform distribution.

We report for each test its running time and its

effective distance error [3, 20], defined as Err =
(1/nQ)

∑

Q(Dist′/Dist∗ − 1), where nQ is the number

of queries, Dist′ is the distance from query Q to the sub-

space selected by our algorithm, and Dist∗ is the distance

between Q and its true nearest subspace, computed off line.

Our tests demonstrate that the ANS scheme is significantly

faster than both linear search methods. In addition, in all our

tests, the Err values measured were fairly constant, main-

taining the low rate of 0.01. The fact that close matches can

be recovered even considering the high value for ε, is a well

documented property of the kd-trees method.

Scene classification. We next test our method on real

image data using the scene classification data of [15]. We

randomly selected 10 “training” images and 10 (different)

“testing” images of three categories. 50 random coordinates

were selected in each image. Then, 9 different, overlapping

9× 9 patches around each coordinate were used to produce

a k = 5 subspace by taking their 5 principal components.

Subspaces originating from “training” images were stored

in our subspace database and those from “testing” images

were used as queries.

For each query subspace the database was searched for

the nearest neighbor providing the category it originated

from. For each “testing” image we counted the number

of nearest neighbors originating from each category and

adopted the maximum as the class label for that image. Fig-

ure 3 compares running time and classification results of our

method and exact linear search. It shows that while classifi-

cation results are comparable our method is almost an order

of magnitude faster. In addition, all the extracted patches

were stored for a point (patch) database and query. Patch

results were inferior, probably since subspaces are a richer

and more invariant representation of appearance.

Yale-B face recognition. Subspaces are commonly used

to capture the appearance of faces under varying illumina-

tions in recognition systems (e.g., [6, 17]). Here, we test the

performance of our approach on a similar application using

image data from the Yale-B face data set [17] (see Fig. 4 for

example images).

For every subject and pose combination in the Yale-B

data set, we randomly chose 18 illuminations as database

examples, and fit them with a subspace of dimension kS =
9. Since the information available at query time may vary,

we tested query subspaces of dimensions 4, 9, and 13. For

each test we randomly select sets of 4, 9, or 13 images, not

used for the database, and used them to fit the query sub-

spaces. Our goal is to recognize the correct face under these

conditions. Fig. 4 reports our success rate compared to an

exact search. With only 90 subject+pose combinations, our

database is far too small to give our method a running time

advantage. Still, our ANS method correctly recognized the

face at 99.2%, 98.4%, and 98.4%, for kQ = 4, 9, and 13,

respectively. These results imply that the performance of

our method is mostly influenced by the particular illumina-

tions used to produce the database and queries, and not by

the dimension of the query subspaces. For all our tests we

used an ANN ε = 10. Better results can be obtained, at the

price of slower processing speeds, for lower ε values.

6. Conclusions
We have presented a sub-linear, approximate nearest

subspace search method. A single general mapping from

subspaces to points was described (with various optimiza-

tions), allowing both query and database items to be sub-

spaces, the query to be of a different dimension than the

database items, and the database items themselves to vary

in dimensions. Once mapped, standard ANN methods can

be used to efficiently search the database for nearest neigh-

bors. We believe this method useful for a wide range of

applications, and indeed demonstrated its performance on

both synthetic and real data. We now plan both to further

improve the quality of our mapping to obtain faster search

times, and in addition explore various additional problems

where it might be applied.
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